A system and method that facilitates and effectuates optimizing a classifier for greater performance in a specific region of classification that is of interest, such as a low false positive rate or a low false negative rate. A two-stage classification model can be trained and employed, where the first stage classification is optimized over the entire classification region and the second stage classifier is optimized for the specific region of interest. During training the entire set of training data is employed by a first stage classifier. Only data that is classified by the first stage classifier or by cross validation to fall within a region of interest is used to train the second stage classifier. During classification, data that is classified within the region of interest by the first classification is given the first stage classifier's classification value, otherwise the classification value for the instance of data from the second stage classifier is used.

 
Web www.patentalert.com

< Automatic identification of distance based event classification errors in a network by comparing to a second classification using event logs

> Mapping between anonymous modules in a network environment

> Method for ordinal ranking

~ 00594