A capacitive MEMS device is formed having a material between electrodes that traps and retains charges. The material can be realized in several configurations. It can be a multilayer dielectric stack with regions of different band gap energies or band energy levels. The dielectric materials can be trappy itself, i.e. when defects or trap sites are pre-fabricated in the material. Another configuration involves a thin layer of a conductive material with the energy level in the forbidden gap of the dielectric layer. The device may be programmed (i.e. offset and threshold voltages pre-set) by a method making advantageous use of charge storage in the material, wherein the interferometric modulator is pre-charged in such a way that the hysteresis curve shifts, and the actuation voltage threshold of the modulator is significantly lowered. During programming phase, charge transfer between the electrodes and the materials can be performed by applying voltage to the electrodes (i.e. applying electrical field across the material) or by UV-illumination and injection of electrical charges over the energy barrier. The interferometric modulator may then be retained in an actuated state with a significantly lower actuation voltage, thereby saving power.

 
Web www.patentalert.com

< Laser-welded solid electrolytic capacitor

< High resolution thin film tactile device to detect distribution of stimuli on by touch

> Honeycomb structured body

> Photosensitive dispersion with adjustable viscosity for the deposition of metal on an insulating substrate and use thereof

~ 00616