Method for performing automated in-scene based atmospheric compensation for multi-and hyperspectral imaging sensors in the solar reflective spectral region

   
   

A method of automatically compensating a multi- or hyper-spectral, multi-pixel image for atmospheric effects, comprising resolving a plurality of spectrally-diverse pixels from the image, determining a spectral baseline from the spectrally-diverse pixels, determining a statistical spectral deviation of the spectrally-diverse pixels, normalizing the statistical spectral deviation by applying a scale factor, and compensating image pixels with both the spectral baseline and the normalized spectral deviation. Another embodiment features a method of automatically determining a measure of atmospheric aerosol optical properties using a multi- or hyper-spectral, multi-pixel image, comprising resolving a plurality of spectrally-diverse pixels from the image, determining a statistical spectral deviation of the spectrally-diverse pixels, correcting the statistical spectral deviation for non-aerosol transmittance losses, and deriving from the statistical spectral deviation one or more wavelength-dependent aerosol optical depths. A final embodiment features a method of automatically determining a measure of atmospheric gaseous optical properties using a multi- or hyper-spectral, multi-pixel image, comprising resolving a plurality of spectrally-diverse pixels from the image, determining a statistical spectral deviation of the spectrally-diverse pixels, and deriving from the statistical spectral deviation wavelength-dependent gaseous optical depths.

 
Web www.patentalert.com

< Image processing device and processing method

< Lossless region of interest coding

> E-mail terminal automatically converting character string of reception e-mail, and e-mail system

> Techniques to implement one-dimensional compression

~ 00189