A laser arrangement including a gain fiber to provide nonlinear amplification, the gain fiber having a first end and a second end, a dispersion adaptation fiber having a first end and a second end, and an output coupler is disclosed. The first end of the dispersion adaptation fiber is connected to the first end of the gain fiber, and the second end of the dispersion adaptation fiber is connected to the second end of the gain fiber, thereby forming a laser cavity. The dispersion adaptation fiber has a length in relation to a length of the gain fiber such that the laser cavity has a net group velocity dispersion which is positive or below a predetermined threshold, and the dispersion adaptation fiber further includes a compression fiber providing nonlinear compression and having a first end and a second end. The first end of the compression fiber is connected to one end of the gain fiber and the second end of the compression fiber is connected to the output coupler. The output coupler is positioned at a predetermined distance away from the gain fiber such that a generated pulse has a pulse width in the laser cavity, the pulse width being narrower than a predefined pulse width value. A method for generating power pulses is also disclosed. The method includes generating a large energy gain-guided soliton by using nonlinear amplification in a positive group velocity dispersion fiber, and propagating the gain-guided soliton through a negative group velocity dispersion fiber for nonlinear compression in a laser cavity round-trip.

 
Web www.patentalert.com

< Optical disc and method of printing optical disc

> VCSEL with improved high frequency characteristics, semiconductor laser device, module, and optical transmission device

> Optical device coupling light propagating in optical waveguide with diffraction grating

~ 00501