The invention relates to a method for the coproduction of methanol and ammonia from natural gas involving the following steps: 1. Natural gas (flow 1) , steam and oxygen are mixed with one another in a reactor A during which the natural gas is partially oxidized and additionally reformed with the aid of catalysts; 2. The gas mixture removed from reactor A is split into a flow (flow 2) for synthesizing methanol in a unit E and into another flow (flow 3) for producing hydrogen; 3. The carbon monoxide present in flow (flow 3) for producing hydrogen is converted into carbon dioxide inside reactor B with the aid of catalysts and intermediate cooling stages; 4. Remaining impurities such as methane, traces of carbon monoxide and argon are washed out in a cleaning unit D, and hydrogen (flows 6, 8) is fed to the methanol synthesis in unit E and to the ammonia synthesis in unit F; 5. The methanol synthesis gas (flow 7) is converted into methanol (flow 9) with the aid of a catalyst, and the methanol is brought to the required level of purity by distillation; 6. The ammonia synthesis gas,(flow 8) is compressed in unit F and converted into ammonia (flow 10) with the aid of a catalyst, and the ammonia is separated from the recovered synthesis gas by partial condensation.

 
Web www.patentalert.com

< Exhaust inlet metallic foam trap coupled to a downstream monolithic precious metal catalyst

> Making of contact mass for organohalosilane preparation and preparation of organohalosilanes

> Thermoelectric transportation material containing nitrogen

~ 00513