The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within-the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.

 
Web www.patentalert.com

< TRANSMISSION CIRCUIT FOR RADIO FREQUENCY SIGNALS AND METHOD FOR TRANSMITTING RADIO FREQUENCY SIGNALS

> DETERMINATION OF ANTENNA NOISE TEMPERATURE FOR HANDHELD WIRELESS DEVICES

> Estimation of asymmetries between inphase and quadrature branches in multicarrier transmission systems

~ 00515