A method for determining the spatial distribution of magnetic resonance (MR) signals from an imaging region within MSEM regions of a local gradient system, wherein, in a preparatory step, a spatial encoding scheme is defined; in an execution step, nuclear spins are repeatedly excited with RF pulses, and thereafter spatially encoded according to the spatial encoding scheme, in at least one dimension by means of the local gradient system, and MR signals are acquired, from which the spatial distribution is calculated, visualized and/or stored, characterized in thatin the preparatory step, a phase encoding scheme with I phase encoding steps is defined, for each phase encoding step according to the phase encoding scheme, an excitation pattern of the transverse magnetization is defined and RF pulses to be irradiated to implement this pattern are calculated, wherein the same phase is defined at all spatial locations of the imaging region within a MSEM region and, in the execution step, according to the spatial encoding scheme each encoding step is repeated I times according to the phase encoding scheme, wherein selection of the imaging region, amplitude modulation, and phase encoding are performed with the calculated RF pulses during excitation of the nuclear spin. This results in unique determination of the spatial distribution of the magnetic resonance signals with a simple RF receiver configuration using local gradient systems.

 
Web www.patentalert.com

< METHOD FOR SIMULTANEOUSLY MEASURING T2* AND DIFFUSION WITH MAGNETIC RESONANCE IMAGING

> BACKGROUND MAGNETIC RESONANCE IMAGING

> TOEPLITZ RANDOM ENCODING FOR REDUCED ACQUISITION IN COMPRESSED SENSING MAGNETIC RESONANCE IMAGING

~ 00557