In low-temperature fuel cells according to prior art, the problem often arises that the diffusion layer of the cathode is filled by water which is permeated or produced on the cathode, such that oxygen can no longer be transported to the catalyst layer of the cathode in a frictionless manner. As a result, said fuel cells are regularly used with a high excess of oxygen in order to reduce the cited transport problems for the oxygen. The inventive fuel cell enables said problem to be solved in that the arrangement of the diffusion layer and the catalyst layer of the cathode is inverted. The diffusion layer, which is embodied in such a way as to also conduct ions, is directly adjacent to the electrolyte membrane. The catalyst layer oriented towards the free cathode space can advantageously directly react with the supplied oxygen without further transport problems. A further advantage lies in the fact that the water produced on the catalyst layer of the cathode and/or permeated by the electrolyte membrane and the diffusion layer can be easily withdrawn via the free cathode space.

 
Web www.patentalert.com

< Fuel cell electrolyte, membrane electrode assembly, and method of manufacturing fuel cell electrolyte

> Apparatus and method for controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells

> Fuel cell having stack structure

~ 00570