Techniques for performing wafer-level burn-in and test of semiconductor devices include a test substrate having active electronic components such as ASICs mounted to an interconnection substrate or incorporated therein, metallic spring contact elements effecting interconnections between the ASICs and a plurality of devices-under-test (DUTs) on a wafer-under-test (WUT), all disposed in a vacuum vessel so that the ASICs can be operated at temperatures independent from and significantly lower than the burn-in temperature of the DUTs. The spring contact elements may be mounted to either the DUTs or to the ASICs, and may fan out to relax tolerance constraints on aligning and interconnecting the ASICs and the DUTs. A significant reduction in interconnect count and consequent simplification of the interconnection substrate is realized because the ASICs are capable of receiving a plurality of signals for testing the DUTs over relatively few signal lines from a host controller and promulgating these signals over the relatively many interconnections between the ASICs and the DUTs. The ASICs can also generate at least a portion of these signals in response to control signals from the host controller. Physical alignment techniques are also described. Micromachined indentations on the front surface of the ASICs ensure capturing free ends of the spring contact elements. Micromachined features on the back surface of the ASICs and the front surface of the interconnection substrate to which they are mounted facilitate precise alignment of a plurality of ASICs on the support substrate.

 
Web www.patentalert.com

< Inspection method and inspection apparatus for inspecting electrical characteristics of inspection object

> Measuring board for electronic device test apparatus

> Interposer structures and methods of manufacturing the same

~ 00593