System and method for estimating a frequency of slider airbearing resonance

   
   

A method and apparatus for estimating the value of a slider airbearing resonance frequency involves obtaining a readback signal from a data storage medium over a plurality of complete airbearing periods and estimating the value of an airbearing resonance frequency using the readback signal. In one embodiment, a discrete signal segment comprising a plurality of frequency transform components is produced using the readback signal information, and the value of the airbearing resonance frequency is estimated using spectral leakage in the discrete signal segment. A ratio of the magnitudes of a first DFT component to a second DFT component is computed at each of a plurality of sampling rates. Each of these sampling rates is defined by a number of samples per average airbearing cycle multiplied by a frequency falling within a range of expected airbearing frequencies associated with a given implementation. The second DFT component is related to the slider airbearing resonance frequency, and the first DFT component is a DFT component adjacent to or non-adjacent to the second DFT component. The airbearing resonance frequency value is estimated using a minimum of the ratios, which may also constitute DFT component power ratios. A number of different frequency transform techniques may be employed, including Discrete Fourier Transform, Fast Fourier Transform, and Short-Time DFT techniques. One of several frequency transform approaches may be implemented depending on whether the detected airbearing signal is stationary or non-stationary. The airbearing resonance frequency methodology may be implemented in-situ a data storage system.

 
Web www.patentalert.com

< Low-cost disposable camera including print media carrying indication of postage paid

< Characterization of individual polymer molecules based on monomer-interface interactions

> Bulk amorphous metal magnetic components for electric motors

> Positioning unit and positioning apparatus with at least two positioning units

~ 00173