Since VF and IR characteristics of a Schottky barrier diode are in a trade-off relationship, there has heretofore been a problem that an increase in a leak current is unavoidable in order to realize a low VF. Moreover, there has been a known structure which suppresses the leak current in such a manner that a depletion layer is spread by providing P+ regions and a pinch-off effect is utilized. However, in reality, it is difficult to completely pinch off the depletion layer. P+ type regions are provided, and a low VF Schottky metal layer is allowed to come into contact with the P+ type regions and depletion regions therearound. A low IR Schottky metal layer is allowed to come into contact with a surface of a N type substrate between the depletion regions. When a forward bias is applied, a current flows through the metal layer of low VF characteristic. When a reverse bias is applied, a current path narrowed by the depletion regions is formed only in the metal layer portion of low IR characteristic. Thus, a low VF and low IR Schottky barrier diode can be realized.

 
Web www.patentalert.com

< Method of forming low-resistance contact electrodes in semiconductor devices

> Design structure for coupling noise prevention

> Inductor integrated chip

~ 00557