Bonded wafer with metal silicidation

   
   

A silicon-on-insulator integrated circuit comprises a handle die, a substantially continuous and unbroken silicide layer over the handle die, and a substantially continuous and unbroken first dielectric layer overlying one side of the silicide layer. A device silicon layer having an upper surface overlies the first dielectric layer, and a second dielectric layer on the handle die underlies the opposite side of the silicide layer. Interconnected transistors are disposed in and at the upper surface of the device silicon layer. A silicon-on insulator integrated circuit includes a handle die and a first dielectric layer formed on the handle die. A substantially continuous and unbroken silicide layer is formed on the first dielectric layer; the silicide layer has a controlled resistance and provides a diffusion barrier to impurities. A substantially continuous and unbroken second dielectric layer is disposed between the silicide layer and a device silicon layer, and trenches extend through the device silicon layer and silicide layer and separate the device silicon layer into islands, each having an underlying continuous silicide area. Interconnected transistors are disposed in and at an upper surface of the device silicon layer. A bonded wafer integrated circuit comprised a handle die and a homogeneous silicide layer bonded to the handle die. A device layer is bonded to the silicide layer, and interconnected transistors are disposed in and at a surface of device layer.

 
Web www.patentalert.com

< MIS transistor having an LDD structure

< Metal spacer gate for CMOS FET

> Nonplanar device with stress incorporation layer and method of fabrication

> Semiconductor structure having buried track conductors, and method for generating an electrical contact with buried track conductors

~ 00189